A direct simulation method for flows with suspended paramagnetic particles
نویسندگان
چکیده
A direct numerical simulation method based on the Maxwell stress tensor and a fictitious domain method has been developed to solve flows with suspended paramagnetic particles. The numerical scheme enables us to take into account both hydrodynamic and magnetic interactions between particles in a fully coupled manner. Particles are assumed to be non-Brownian with negligible inertia. Rigid body motions of particles in 2D are described by a rigid-ring description implemented by Lagrange multipliers. The magnetic force, acting on the particles due to magnetic fields, is represented by the divergence of the Maxwell stress tensor, which acts as a body force added to the momentum balance equation. Focusing on two-dimensional problems, we solve a single-particle problem for verification. With the magnetic force working on the particle, the proper number of collocation points is found to be two points per element. The convergence with mesh refinement is verified by comparing results from regular mesh problems with those from a boundary-fitted mesh problem as references. We apply the developed method to two application problems: two-particle interaction in a uniform magnetic field and the motion of a magnetic chain in a rotating field, demonstrating the capability of the method to tackle general problems. In the motion of a magnetic chain, especially, the deformation pattern at break-up is similar to the experimentally observed one. The present formulation can be extended to three-dimensional and viscoelastic flow problems. 2008 Elsevier Inc. All rights reserved. PACS: 02.70.Dh; 47.50.Gj; 47.61. k; 83.80.Gv
منابع مشابه
Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملA fictitious domain/finite element method for particulate flows
The paper presents a finite element method for the direct numerical simulation of 3D incompressible fluid flows with suspended rigid particles. It uses the fictitious domain approach extending the fluid domain into the domain occupied by the particles. Although the idea for the present formulation came from the fictitious domain formulation of Glowinski et al. [J. Comput. Phys. 169 (2001) 363] ...
متن کاملFlows with suspended and floating particles
The evolution of the configuration of a set of particles dispersed in a flowing liquid is crucial in many applications such as sedimentation, slurry transport, rheology and structured arrays of micro and nano particles. Direct Simulation based on what is called Fictitious Domain Method coupled with Finite Element Method has been used to study particulate flows and sedimentation process. Here we...
متن کاملDirect Measurement and Simulation of Apparent Slip Velocities in Sub-micron-scale Flows
The possible existence of slip of liquids in close proximity to a smooth surface is studied experimentally and numerically via the dynamics of small particles suspened in a shear flow. Sub-micron fluorescent particles suspended in water and imaged using Total Internal Reflection Fluorescence Microscopy (TIRFM) and a PTV algorithm. The measurements are in excellent agreement with Monte Carlo sim...
متن کاملPrediction of Viscosity of Slurry Suspended Fine Particles Using Coupled DEM-DNS Simulation
Prediction of the apparent viscosity of a slurry suspended fine particles is important for developing slurrytreating processes. After Einstein’s formulation for the apparent viscosity of a dilute, completely dispersed slurry, several viscosity equations were proposed. However, viscosity depends not only on the volume fraction of solid particles but also on many factors such as particle shape, p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008